Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Trends Immunol ; 45(5): 381-396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697871

RESUMEN

Recent studies have uncovered a new role for sensory neurons in influencing mammalian host immunity, challenging conventional notions of the nervous and immune systems as separate entities. In this review we delve into this groundbreaking paradigm of neuroimmunology and discuss recent scientific evidence for the impact of sensory neurons on host responses against a wide range of pathogens and diseases, encompassing microbial infections and cancers. These valuable insights enhance our understanding of the interactions between the nervous and immune systems, and also pave the way for developing candidate innovative therapeutic interventions in immune-mediated diseases highlighting the importance of this interdisciplinary research field.


Asunto(s)
Células Receptoras Sensoriales , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/fisiología , Neuroinmunomodulación , Inmunidad , Interacciones Huésped-Patógeno/inmunología , Neoplasias/inmunología , Neoplasias/terapia
2.
Nat Commun ; 15(1): 1752, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409190

RESUMEN

Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Monocitos , Humanos , Animales , Ratones , Niño , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Diferenciación Celular
3.
Expert Opin Ther Targets ; 27(8): 679-703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651647

RESUMEN

INTRODUCTION: Gout arthritis (GA) is an intermittent inflammatory disease affecting approximately 10% of the worldwide population. Symptomatic phases (acute flares) are timely spaced by asymptomatic periods. During an acute attack, redness, joint swelling, limited movement, and excruciating pain are common symptoms. However, the current available therapies are not fully effective in reducing symptoms and offer numerous side effects. Therefore, unveiling new drug targets and effector molecules are required in developing novel GA therapeutics. AREAS COVERED: This review discusses the pathophysiological mechanisms of GA and explores potential pharmacological targets to ameliorate disease outcome. In addition, we listed promising pre-clinical studies demonstrating effector molecules with therapeutical potential. Among those, we emphasized the importance of natural products, including traditional Chinese medicine formulas and their multitarget mechanisms of action. EXPERT OPINION: In our search, we observed that there is a massive gap between pre-clinical and clinical knowledge. Only a minority (4.4%) of clinical trials aimed to intervene by applying natural products or current hot targets described herein. In this sense, we envisage four possibilities for GA therapeutics, which include the repurposing of existing therapies, ALX/FPR2 agonism for improvement in disease outcome, the use of multitarget drugs (e.g. natural products), and targeting the neuroinflammatory component of GA.


Asunto(s)
Productos Biológicos , Gota , Humanos , Gota/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
4.
Curr Res Neurobiol ; 4: 100093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397816

RESUMEN

Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action.

5.
Front Immunol ; 14: 949407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388729

RESUMEN

Background: Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain. Methods: Mice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4 in vivo. Results: LXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2-induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons. Conclusion: LXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation.


Asunto(s)
Artritis , Lipoxinas , Animales , Ratones , FN-kappa B , Factor 2 Relacionado con NF-E2/genética , Lipoxinas/farmacología , Líquido Sinovial , Inflamación , Canales Catiónicos TRPV/genética
6.
Eur J Appl Physiol ; 123(9): 1949-1964, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37119360

RESUMEN

PURPOSE: Delayed-onset muscle soreness (DOMS) describes an entity characterized by ultrastructural muscle damage. Hesperidin methyl chalcone (HMC) is a synthetic flavonoid presenting analgesic, anti-inflammatory, and antioxidant properties. We evaluated the effects of HMC upon DOMS. METHOD: In a preventive paradigm, 31 sedentary young men were submitted to a randomized, double-blinded parallel trial and received HMC 500 mg or one placebo capsule × 3 days before an intense dynamic exercise protocol (concentric/eccentric actions) applied for lower limbs for inducing muscle damage. Assessments were conducted at baseline, and 24 and 48 h after, comprising physical performance, and post-muscle soreness and damage, inflammation, recovery of muscle strength, and postural balance associated with DOMS. HMC safety was also evaluated. Thirty participants completed the study. RESULTS: HMC improved the performance of participants during exercise (40.3 vs 51.3 repetitions to failure, p = 0.0187) and inhibited CPK levels (90.5 vs 57.9 U/L, p = 0.0391) and muscle soreness during passive quadriceps palpation (2.6 vs 1.4 VAS cm, p = 0.0439), but not during active actions, nor did it inhibit IL-1ß or IL-10 levels. HMC improved muscle strength recovery, and satisfactorily refined postural balance, without inducing injury to kidneys or liver. CONCLUSIONS: Preemptive HMC supplementation may be beneficial for boosting physical performance and for the amelioration of clinical parameters related to DOMS, including pain on muscle palpation, increased blood CPK levels, and muscle strength and proprioceptive deficits, without causing adverse effects. These data advance the understanding of the benefits provided by HMC for DOMS treatment, which supports its usefulness for such purpose.


Asunto(s)
Chalconas , Hesperidina , Masculino , Humanos , Adulto Joven , Mialgia/tratamiento farmacológico , Mialgia/prevención & control , Mialgia/etiología , Hesperidina/farmacología , Hesperidina/uso terapéutico , Chalconas/farmacología , Chalconas/uso terapéutico , Ejercicio Físico/fisiología , Músculo Esquelético
7.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36986443

RESUMEN

Kaurenoic acid (KA) is a diterpene extracted from Sphagneticola trilobata (L.) Pruski. KA presents analgesic properties. However, the analgesic activity and mechanisms of action of KA in neuropathic pain have not been investigated so far; thus, we addressed these points in the present study. A mouse model of neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Acute (at the 7th-day post-CCI surgery) and prolonged (from 7-14th days post-CCI surgery) KA post-treatment inhibited CCI-induced mechanical hyperalgesia at all evaluated time points, as per the electronic version of von Frey filaments. The underlying mechanism of KA was dependent on activating the NO/cGMP/PKG/ATP-sensitive potassium channel signaling pathway since L-NAME, ODQ, KT5823, and glibenclamide abolished KA analgesia. KA reduced the activation of primary afferent sensory neurons, as observed by a reduction in CCI-triggered colocalization of pNF-κB and NeuN in DRG neurons. KA treatment also increased the expression of neuronal nitric oxide synthase (nNOS) at the protein level as well as the intracellular levels of NO in DRG neurons. Therefore, our results provide evidence that KA inhibits CCI neuropathic pain by activating a neuronal analgesic mechanism that depends on nNOS production of NO to silence the nociceptive signaling that generates analgesia.

8.
Cells ; 12(4)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831223

RESUMEN

Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.


Asunto(s)
Anticuerpos Monoclonales , Fiebre Chikungunya , Virus Chikungunya , Hiperalgesia , Proteínas del Envoltorio Viral , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales , Antineoplásicos , Hiperalgesia/tratamiento farmacológico , Canales Catiónicos TRPV , Proteínas del Envoltorio Viral/metabolismo , Fiebre Chikungunya/tratamiento farmacológico
9.
Molecules ; 28(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677929

RESUMEN

Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.


Asunto(s)
Artritis , Chalconas , Hesperidina , Ratones , Animales , Nociceptores/metabolismo , Chalconas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Artritis/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Hiperalgesia/tratamiento farmacológico , Citocinas/metabolismo
10.
Brain Sci ; 12(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36138983

RESUMEN

We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.

11.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883752

RESUMEN

Hesperidin is derived from citrus fruits among other plants. Hesperidin was methylated to increase its solubility, generating hesperidin methyl chalcone (HMC), an emerging flavonoid that possess anti-inflammatory and antioxidant properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful regulator of cellular resistance to oxidant products. Previous data evidenced HMC can activate Nrf2 signaling, providing antioxidant protection against diverse pathological conditions. However, its effects on kidney damage caused by non-steroidal anti-inflammatory drugs (NSAIDs) have not been evaluated so far. Mice received a nephrotoxic dose of diclofenac (200 mg/kg) orally followed by intra-peritoneal (i.p.) administration of HMC (0.03-3 mg/kg) or vehicle. Plasmatic levels of urea, creatinine, oxidative stress, and cytokines were assessed. Regarding the kidneys, oxidative parameters, cytokine production, kidney swelling, urine NGAL, histopathology, and Nrf2 mRNA expression and downstream targets were evaluated. HMC dose-dependently targeted diclofenac systemic alterations by decreasing urea and creatinine levels, and lipid peroxidation, as well as IL-6, IFN-γ, and IL-33 production, and restored antioxidant properties in plasma samples. In kidney samples, HMC re-established antioxidant defenses, inhibited lipid peroxidation and pro-inflammatory cytokines and upregulated IL-10, reduced kidney swelling, urine NGAL, and histopathological alterations. Additionally, HMC induced mRNA expression of Nrf2 and its downstream effectors HO-1 and Nqo1, as well as reduced the levels of Keap1 protein detected in renal tissue. The present data demonstrate HMC is a potential compound for the treatment of acute renal damage caused by diclofenac, a routinely prescribed non-steroidal anti-inflammatory drug.

12.
Br J Pharmacol ; 179(18): 4500-4515, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716378

RESUMEN

BACKGROUND AND PURPOSE: Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain. Current therapies are often ineffective in reducing gout-related pain. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator with anti-inflammatory and analgesic proprieties. In this study, we evaluated the effects and mechanisms of action of RvD1 in an experimental mouse model of gouty arthritis, an aim that was not pursued previously in the literature. EXPERIMENTAL APPROACH: Male mice were treated with RvD1 (intrathecally or intraperitoneally) before or after intraarticular stimulation with MSU. Mechanical hyperalgesia was assessed using an electronic von Frey aesthesiometer. Leukocyte recruitment was determined by knee joint wash cell counting and immunofluorescence. IL-1ß production was measured by ELISA. Phosphorylated NF-kB and apoptosis-associated speck-like protein containing CARD (ASC) were detected by immunofluorescence, and mRNA expression was determined by RT-qPCR. CGRP release was determined by EIA and immunofluorescence. MSU crystal phagocytosis was evaluated by confocal microscopy. KEY RESULTS: RvD1 inhibited MSU-induced mechanical hyperalgesia in a dose- and time-dependent manner by reducing leukocyte recruitment and IL-1ß production in the knee joint. Intrathecal RvD1 reduced the activation of peptidergic neurons and macrophages as well as silenced nociceptor to macrophage communication and macrophage function. CGRP stimulated MSU phagocytosis and IL-1ß production by macrophages. RvD1 downmodulated this phenomenon directly by acting on macrophages, and indirectly by inhibiting CGRP release and CGRP-dependent activation of macrophages. CONCLUSIONS AND IMPLICATIONS: This study reveals a hitherto unknown neuro-immune axis in gouty arthritis that is targeted by RvD1.


Asunto(s)
Artritis Gotosa , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Péptido Relacionado con Gen de Calcitonina , Ácidos Docosahexaenoicos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Inflamación/metabolismo , Activación de Macrófagos , Masculino , Ratones , Neuroinmunomodulación , Neuronas , Nociceptores/metabolismo , Dolor , Ácido Úrico/química , Ácido Úrico/farmacología
13.
J Agric Food Chem ; 70(25): 7644-7652, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35675570

RESUMEN

Poly(epsilon-caprolactone) nanoparticles are an efficient carrier system for atrazine. However, there is a gap regarding the effects of nanoencapsulation on herbicide-plant interactions. Here, we evaluate the fate and photosystem II inhibition of nano and commercial atrazine in hydroponically grown mustard (Brassica juncea) plants whose roots were exposed to the formulations. In addition, to quantify the endogenous levels of atrazine in plant organs, we measured the inhibition of photosystem II activity by both formulations. Moreover, the fluorescently labeled nanoatrazine was tracked in plant tissues using confocal microscopy. The nanoencapsulation induced greater inhibition of photosystem II activity as well as higher accumulation of atrazine in roots and leaves. The nanoparticles were quickly absorbed by the roots, being detected in the vascular tissues and the leaves. Overall, these results provide insights into the mechanisms involved in the enhanced preemergent herbicidal activity of nanoatrazine against target plants.


Asunto(s)
Atrazina , Herbicidas , Atrazina/farmacología , Herbicidas/farmacología , Planta de la Mostaza , Complejo de Proteína del Fotosistema II , Raíces de Plantas
14.
Pain Pract ; 22(4): 453-462, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080097

RESUMEN

BACKGROUND: Despite the wide variety of Covid-19 symptoms, pain and the related mechanisms underlying unsettled nociceptive status are still under-prioritized. Understanding the complex network of Covid-19-related pain may result in new lines of study. It is unknown whether patient's immunological background influences pain in the acute phase of Covid-19, including musculoskeletal pain. Thus, we evaluated the blood levels of selected molecules that are upregulated in SARS-CoV-2 infection and analyzed a possible correlation with pain during Covid-19. METHODS: A cohort of 20 hospitalized patients with confirmed diagnoses for Covid-19 were evaluated in the context of pain. Visual analogic scale (VAS) was applied to quantitate pain level. Blood tests were used to determine the systemic levels of cytokines (IL-10 and IL-1ß), substance P, and leptin. The data were correlated when appropriate to determine the association between pain-related markers and assessed pain intensity. RESULTS: Our findings show that systemic levels of IL-10 have strong negative correlation with pain intensity on Covid-19 patients. Additionally, we also show that leptin systemic levels were increased in Covid-19 patients with pain, however, with moderate positive correlation between these events. IL-1ß and SP levels did not differ between Covid-19 patients with or without pain. Men reported less pain compared to women. No differences were found between genders in the levels of the molecules evaluated in patients with pain. CONCLUSION: IL-10 has been described over the years as an anti-inflammatory and analgesic cytokine. The present data support that low IL-10 levels might contribute to Covid-19-associated pain.


Asunto(s)
COVID-19 , Interleucina-10/sangre , COVID-19/complicaciones , Citocinas , Femenino , Humanos , Leptina , Masculino , Dolor , SARS-CoV-2
15.
Front Pharmacol ; 13: 950314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703752

RESUMEN

In this study, we pursue determining the effect of pentoxifylline (Ptx) in delayed-onset muscle soreness (DOMS) triggered by exposing untrained mice to intense acute swimming exercise (120 min), which, to our knowledge, has not been investigated. Ptx treatment (1.5, 4.5, and 13.5 mg/kg; i.p., 30 min before and 12 h after the session) reduced intense acute swimming-induced mechanical hyperalgesia in a dose-dependent manner. The selected dose of Ptx (4.5 mg/kg) inhibited recruitment of neutrophils to the muscle tissue, oxidative stress, and both pro- and anti-inflammatory cytokine production in the soleus muscle and spinal cord. Furthermore, Ptx treatment also reduced spinal cord glial cell activation. In conclusion, Ptx reduces pain by targeting peripheral and spinal cord mechanisms of DOMS.

16.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615318

RESUMEN

In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.


Asunto(s)
Endotoxemia , Lipopolisacáridos , Femenino , Ratones , Animales , Lipopolisacáridos/toxicidad , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Riñón , Ácidos Docosahexaenoicos/metabolismo
17.
Front Mol Biosci ; 9: 1059116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36660430

RESUMEN

This work addresses the possible role of the cell membrane in the molecular mechanism of action of two salan-type ruthenium complexes that were previously shown to be active against human tumor cells, namely [Ru(III)(L1)(PPh3)Cl] and [Ru(III)(L2)(PPh3)Cl] (where L1 is 6,6'-(1R,2R)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(3-methoxyphenol); and L2 is 2,2'-(1R,2R)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(4-methoxyphenol)). One-component membrane models were first used, a disordered fluid bilayer of dioleoylphosphatodylcholine (DOPC), and an ordered rigid gel bilayer of dipalmitoylphosphatidylcholine. In addition, two quaternary mixtures of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol were used to mimic the lipid composition either of mammalian plasma membrane (1:1:1:1 mol ratio) or of a cancer cell line membrane (36.2:23.6:6.8:33.4 mol ratio). The results show that both salan ligands L1 and L2 bind relatively strongly to DOPC bilayers, but without significantly affecting their structure. The ruthenium complexes have moderate affinity for DOPC. However, their impact on the membranes was notable, leading to a significant increase in the permeability of the lipid vesicles. None of the compounds compromised liposome integrity, as revealed by dynamic light scattering. Fluorescence spectroscopy studies revealed changes in the biophysical properties of all membrane models analyzed in the presence of the two complexes, which promoted an increased fluidity and water penetration into the lipid bilayer in the one-component systems. In the quaternary mixtures, one of the complexes had an analogous effect (increasing water penetration), whereas the other complex reorganized the liquid ordered and liquid disordered domains. Thus, small structural differences in the metal ligands may lead to different outcomes. To better understand the effect of these complexes in cancer cells, the membrane dipole potential was also measured. For both Ru complexes, an increase in the dipole potential was observed for the cancer cell membrane model, while no alteration was detected on the non-cancer plasma membrane model. Our results show that the action of the Ru(III) complexes tested involves changes in the biophysical properties of the plasma membrane, and that it also depends on membrane lipid composition, which is frequently altered in cancer cells when compared to their normal counterparts.

18.
Eur J Cancer ; 158: 63-71, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34655838

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) combined with apalutamide, abiraterone acetate plus prednisone, enzalutamide, or docetaxel are the standard treatments for advanced castration-sensitive prostate cancer (CSPC). We investigated ADT-free alternatives for advanced CSPC. PATIENTS AND METHODS: LACOG 0415 is a phase 2, open-label, non-comparative, randomized trial. Patients with advanced CSPC were randomized (1:1:1) to receive goserelin plus abiraterone acetate and prednisone (ADT plus AAP arm), apalutamide (APA arm), or apalutamide plus abiraterone acetate and prednisone (APA plus AAP arm). The primary endpoint was the proportion of patients with PSA of ≤0.2 ng/mL at week 25 in the modified intention-to-treat population. Safety analyses were performed in all patients with at least one dose of the study drug. RESULTS: Of 128 randomized patients, 120 patients were evaluable for PSA response at week 25; 17.2% had a high-risk biochemical recurrence, 8.6% had locally advanced disease, and 74.2% had distant metastases. At week 25, PSA of ≤0.2 ng/mL was observed in 75.6% (95%CI 59.7%-87.6%), 60.0% (95%CI 43.3%-75.1%), and 79.5% (95%CI 63.5%-90.7%) of patients in ADT plus AAP, APA, and APA plus AAP arms, respectively. PSA decline of ≥80% was observed in 100%, 90.0%, and 97.4%, respectively. Grade 3-4 AEs were observed in 31.0%, 21.4% and 36.4%, respectively. Testosterone levels increased significantly in the APA arm and decreased significantly in ADT plus AAP and APA plus AAP arms. CONCLUSIONS: ADT-free alternatives provide a high PSA response in advanced CSPC, although the APA arm did not reach the expected rate of PSA of ≤0.2 ng/mL at week 25. These results warrant further investigation of ADT-free treatments as alternatives in advanced CSPC. SOURCE STUDY REGISTRATION: ClinicalTrials.govNCT02867020.

19.
Toxicon ; 200: 3-12, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153310

RESUMEN

Scorpionism is a public health burden in Brazil. Tityus bahiensis is responsible for most accidents in the Southeastern region of Brazil. Here, the hyperalgesic mechanisms of Tityus bahiensis venom were investigated, focusing on the role of pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 1 beta [IL-1ß]) and activation of the transcription factor NFκB. Intraplantar (i.pl.) administration of Tityus bahiensis venom (0.2, 0.6, 1.2 and 2.4 µg/20 µL i.pl.) induced mechanical hyperalgesia and thermal hyperalgesia. The 2.4 µg dose of Tityus bahiensis venom induced overt pain-like behavior and increased myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities, TNF-α and IL-1ß levels in the paw tissue. Systemic pre-treatment with etanercept (soluble TNF-α receptor; 10 mg/kg), IL-1ra (IL-1 receptor antagonist; 30 mg/kg) and pyrrolidine dithiocarbamate (PDTC, nuclear factor kappa B [NFκB] inhibitor; 100 mg/kg) inhibited Tityus bahiensis venom-induced mechanical and thermal hyperalgesia, MPO and NAG activity and overt pain-like behavior. These data demonstrate the involvement of TNF-α and IL-1ß signaling as well as NFκB activation in Tityus bahiensis venom-induced mechanical and thermal hyperalgesia, overt pain-like behavior, and MPO activity and NAG activity, indicating thus, that targeting these mechanisms might contribute to reducing the pain in this scorpionism.


Asunto(s)
Dolor , Ponzoñas , Animales , Hiperalgesia/inducido químicamente , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Escorpiones , Factor de Necrosis Tumoral alfa
20.
Saude e pesqui. (Impr.) ; 14(3): e7826, jul-set 2021.
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1354313

RESUMEN

O objetivo deste estudo foi avaliar o perfil de estilo de vida de pacientes com doença renal crônica em hemodiálise. Trata-se de investigação transversal de abordagem quantitativa, do tipo analítico-descritiva. A coleta de dados foi efetivada no Hospital Regional do Baixo Amazonas, no município de Santarém, Estado do Pará. Os participantes responderam questionário sociodemográfico e de fatores associados criado pelos autores da pesquisa, e para análise do estilo de vida utilizou-se o Instrumento Perfil de Estilo de Vida Individual. Foram avaliados 70 pacientes renais crônicos prevalentemente do sexo masculino e faixa etária entre 21 e 71 anos. A pontuação média do questionário de estilo de vida global foi 20,8±7 pontos, 15,7% apresentaram classificação do estilo de vida negativo, 72,2% regular e 8,5% positivo. Para 24,2% a doença tem um impacto importante na vida. Concluiu-se que houve prevalência de estilo de vida classificado como regular, bem como autorrelato de impacto importante da doença renal crônica sobre a vida do paciente, o que pode ser potencialmente atenuado por componentes de um estilo de vida promotor de saúde.


This study aimed to evaluate the lifestyle profile of patients with chronic kidney disease undergoing hemodialysis. This was a quantitative, cross-sectional, analytical and descriptive study. Data were collected at Baixo Amazonas Regional Hospital, in the municipality of Santarém, state of Pará. The participants answered a sociodemographic, associated factors questionnaire created by the authors, and for lifestyle analysis, the Individual Lifestyle Profile Instrument was used. Seventy chronic kidney patients, predominantly male and aged between 21 and 71 years, were evaluated. The average score of the global lifestyle questionnaire was 20.8 ± 7 points, 15.7% had a negative lifestyle rating, 72.2% regular and 8.5% positive. For 24.2%, the disease has an important impact on life. There was a prevalence of regular lifestyle, as well as self-report of important impact of chronic kidney disease on the patient's life, which can potentially be mitigated by components of a health-promoting lifestyle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...